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Abstract The most probable structures of the cucur-

bit[6]uril�H3O? and cucurbit[6]uril�(H3O?)2 cationic

complex species have been derived by quantum mechani-

cal DFT calculations. In these two complexes, each of the

H3O? ions is bound by three strong linear hydrogen bonds

to three carbonyl oxygen atoms of the parent macrocycle.
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Introduction

Cucurbit[n]urils are macrocyclic compounds consisting of

n glycoluril units connected by 2n methylene bridges. The

shape of the macrocycle resembles a hollow barrel with a

hydrophobic interior and partially negatively charged rims

of carbonyl groups on both sides of the macrocycle. This

structure makes the macrocycles suitable for binding

organic guests bearing one or more positive charges in their

structures [1–3].

Cucurbit[6]uril (1, Scheme 1) is the oldest and the most

accessible representative of the CB family of macrocycles

and its supramolecular interactions with various guests

have been extensively investigated [1, 2]. The ability of 1

to behave as a synthetic receptor was described in detail by

Mock and co-workers, together with the discovery of the

macrocyclic structure of the molecule [4]. They reported

the formation of complexes of 1 with aliphatic amines and

diamines. Guest positioning and complex stability strongly

depended on the length of the alkyl chain of the guest

[5–8]. Since then, complexation between 1 and many

organic guests has been studied, including polyamines

[9, 10], viologen derivatives [11], organic dyes [12],

polypeptides [13], and amino acids and dipeptides [14].

Recently, protonation of valinomycin, some calix[4]are-

nes, dibenzo-18-crown-6, and a hexaarylbenzene-based

receptor has been investigated in detail [15–27]. Protonation

of 1 has been proved experimentally in acidic aqueous

solutions [28]. The structures of the protonated 1 species

have not yet been solved, however. Therefore, in the work

reported in this paper, the structures of the 1�H3O? and

1�(H3O?)2 cationic complex species were predicted by

means of quantum mechanical DFT calculations.

Results and discussion

To increase numerical accuracy and reduce oscillations

during the molecular geometry optimization, two-electron

integrals and their derivatives were calculated by use of the

pruned (99,590) integration grid with 99 radial shells and

590 angular points per shell; this was requested by means

of the Gaussian 03 keyword ‘‘Int=UltraFine’’.

Although a possible effect of a polar solvent on the

detailed structures of 1, 1�H3O?, and 1�(H3O?)2 could be
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imagined, our results from quantum mechanical calcula-

tions in similar cases, performed analogously, were in very

good agreement with experimental results [29–35].

In the model calculations, we optimized the molecular

geometry of the parent macrocycle 1 and its complex

species with H3O?. The optimized structure of the free

macrocyclic receptor 1 with C6 symmetry is illustrated in

Fig. 1.

In Fig. 2, the structure obtained by full DFT-optimiza-

tion of the 1�H3O? complex having C3 symmetry is

depicted, together with the lengths of the corresponding

bonds (in Å; 1 Å = 0.1 nm). It follows from this figure

that complexation with the H3O? cation changes the

overall shape of the parent macrocycle 1 only slightly. In

the resulting 1�H3O? cationic complex species, which is

most energetically favoured, the ‘‘central’’ cation H3O? is

bound by three strong linear hydrogen bonds to three car-

bonyl oxygen atoms (1.80, 1.80, and 1.80 Å) of the parent

receptor 1.

The lowest-energy-level structure obtained by full DFT-

optimization of the 1�(H3O?)2 cationic complex species is

shown in Fig. 3, together with the lengths of the corre-

sponding hydrogen bonds (in Å). Compared with the free

macrocycle 1 (Fig. 1), the cucurbit[6]uril part of the

complex 1�(H3O?)2 is only slightly distorted, so its struc-

ture has C3 symmetry. In this complex species, each of the

two H3O? cations is bound by three strong linear H-bonds

to three carbonyl oxygen atoms (1.79, 1.79, and 1.79 Å) of

the parent macrocycle. The distance between the two

oxygen atoms of the two H3O? cations is 5.00 Å.

Fig. 1 Two projections of the DFT-optimized structure of free 1
[B3LYP/6-31G(d)]

Fig. 2 Two projections of the DFT-optimized structure of the

1�H3O? complex [B3LYP/6-31G(d)]. Hydrogen bond lengths of

H3O? to the three corresponding carbonyl oxygen atoms of 1 are

1.80, 1.80, and 1.80 Å

Scheme 1
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Finally, the calculated binding energies of the complexes

1�H3O? and 1�(H3O?)2 are -404.8 and -608.5 kJ/mol,

confirming the relatively high stability of these cationic

complex species.

In conclusion, it is possible to assume that other

cucurbituril compounds (e.g., cucurbit[5]uril, cucurbit

[7]uril, and cucurbit[8]uril) can form—naturally, under

suitable conditions—complex CB structures involving the

cations H3O? or H5O2
?.

Methodology

The quantum mechanical calculations were carried out at

the density functional level of theory (DFT, B3LYP func-

tional) [36, 37] using the Gaussian 03 software suite [38].

The 6-31G(d) basis set was used and the optimizations

were unconstrained.
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Chem 19:419

31. Křı́ž J, Dybal J, Makrlı́k E, Vaňura P (2008) Supramol Chem

20:387
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